1
0
Fork 0
pgcli/pgcli/pyev.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

440 lines
15 KiB
Python
Raw Permalink Normal View History

import textwrap
import re
from click import style as color
DESCRIPTIONS = {
"Append": "Used in a UNION to merge multiple record sets by appending them together.",
"Limit": "Returns a specified number of rows from a record set.",
"Sort": "Sorts a record set based on the specified sort key.",
"Nested Loop": "Merges two record sets by looping through every record in the first set and trying to find a match in the second set. All matching records are returned.",
"Merge Join": "Merges two record sets by first sorting them on a join key.",
"Hash": "Generates a hash table from the records in the input recordset. Hash is used by Hash Join.",
"Hash Join": "Joins to record sets by hashing one of them (using a Hash Scan).",
"Aggregate": "Groups records together based on a GROUP BY or aggregate function (e.g. sum()).",
"Hashaggregate": "Groups records together based on a GROUP BY or aggregate function (e.g. sum()). Hash Aggregate uses a hash to first organize the records by a key.",
"Sequence Scan": "Finds relevant records by sequentially scanning the input record set. When reading from a table, Seq Scans (unlike Index Scans) perform a single read operation (only the table is read).",
"Seq Scan": "Finds relevant records by sequentially scanning the input record set. When reading from a table, Seq Scans (unlike Index Scans) perform a single read operation (only the table is read).",
"Index Scan": "Finds relevant records based on an Index. Index Scans perform 2 read operations: one to read the index and another to read the actual value from the table.",
"Index Only Scan": "Finds relevant records based on an Index. Index Only Scans perform a single read operation from the index and do not read from the corresponding table.",
"Bitmap Heap Scan": "Searches through the pages returned by the Bitmap Index Scan for relevant rows.",
"Bitmap Index Scan": "Uses a Bitmap Index (index which uses 1 bit per page) to find all relevant pages. Results of this node are fed to the Bitmap Heap Scan.",
"CTEScan": "Performs a sequential scan of Common Table Expression (CTE) query results. Note that results of a CTE are materialized (calculated and temporarily stored).",
"ProjectSet": "ProjectSet appears when the SELECT or ORDER BY clause of the query. They basically just execute the set-returning function(s) for each tuple until none of the functions return any more records.",
"Result": "Returns result",
}
class Visualizer:
def __init__(self, terminal_width=100, color=True):
self.color = color
self.terminal_width = terminal_width
self.string_lines = []
def load(self, explain_dict):
self.plan = explain_dict.pop("Plan")
self.explain = explain_dict
self.process_all()
self.generate_lines()
def process_all(self):
self.plan = self.process_plan(self.plan)
self.plan = self.calculate_outlier_nodes(self.plan)
#
def process_plan(self, plan):
plan = self.calculate_planner_estimate(plan)
plan = self.calculate_actuals(plan)
self.calculate_maximums(plan)
#
for index in range(len(plan.get("Plans", []))):
_plan = plan["Plans"][index]
plan["Plans"][index] = self.process_plan(_plan)
return plan
def prefix_format(self, v):
if self.color:
return color(v, fg="bright_black")
return v
def tag_format(self, v):
if self.color:
return color(v, fg="white", bg="red")
return v
def muted_format(self, v):
if self.color:
return color(v, fg="bright_black")
return v
def bold_format(self, v):
if self.color:
return color(v, fg="white")
return v
def good_format(self, v):
if self.color:
return color(v, fg="green")
return v
def warning_format(self, v):
if self.color:
return color(v, fg="yellow")
return v
def critical_format(self, v):
if self.color:
return color(v, fg="red")
return v
def output_format(self, v):
if self.color:
return color(v, fg="cyan")
return v
def calculate_planner_estimate(self, plan):
plan["Planner Row Estimate Factor"] = 0
plan["Planner Row Estimate Direction"] = "Under"
if plan["Plan Rows"] == plan["Actual Rows"]:
return plan
if plan["Plan Rows"] != 0:
plan["Planner Row Estimate Factor"] = (
plan["Actual Rows"] / plan["Plan Rows"]
)
if plan["Planner Row Estimate Factor"] < 10:
plan["Planner Row Estimate Factor"] = 0
plan["Planner Row Estimate Direction"] = "Over"
if plan["Actual Rows"] != 0:
plan["Planner Row Estimate Factor"] = (
plan["Plan Rows"] / plan["Actual Rows"]
)
return plan
#
def calculate_actuals(self, plan):
plan["Actual Duration"] = plan["Actual Total Time"]
plan["Actual Cost"] = plan["Total Cost"]
for child in plan.get("Plans", []):
if child["Node Type"] != "CTEScan":
plan["Actual Duration"] = (
plan["Actual Duration"] - child["Actual Total Time"]
)
plan["Actual Cost"] = plan["Actual Cost"] - child["Total Cost"]
if plan["Actual Cost"] < 0:
plan["Actual Cost"] = 0
plan["Actual Duration"] = plan["Actual Duration"] * plan["Actual Loops"]
return plan
def calculate_outlier_nodes(self, plan):
plan["Costliest"] = plan["Actual Cost"] == self.explain["Max Cost"]
plan["Largest"] = plan["Actual Rows"] == self.explain["Max Rows"]
plan["Slowest"] = plan["Actual Duration"] == self.explain["Max Duration"]
for index in range(len(plan.get("Plans", []))):
_plan = plan["Plans"][index]
plan["Plans"][index] = self.calculate_outlier_nodes(_plan)
return plan
def calculate_maximums(self, plan):
if not self.explain.get("Max Rows"):
self.explain["Max Rows"] = plan["Actual Rows"]
elif self.explain.get("Max Rows") < plan["Actual Rows"]:
self.explain["Max Rows"] = plan["Actual Rows"]
2023-05-24 22:40:11 +00:00
if not self.explain.get("Max Cost"):
self.explain["Max Cost"] = plan["Actual Cost"]
elif self.explain.get("Max Cost") < plan["Actual Cost"]:
self.explain["Max Cost"] = plan["Actual Cost"]
if not self.explain.get("Max Duration"):
self.explain["Max Duration"] = plan["Actual Duration"]
elif self.explain.get("Max Duration") < plan["Actual Duration"]:
self.explain["Max Duration"] = plan["Actual Duration"]
if not self.explain.get("Total Cost"):
self.explain["Total Cost"] = plan["Actual Cost"]
elif self.explain.get("Total Cost") < plan["Actual Cost"]:
self.explain["Total Cost"] = plan["Actual Cost"]
#
def duration_to_string(self, value):
if value < 1:
return self.good_format("<1 ms")
elif value < 100:
return self.good_format("%.2f ms" % value)
elif value < 1000:
return self.warning_format("%.2f ms" % value)
elif value < 60000:
return self.critical_format(
2023-05-24 22:40:11 +00:00
"%.2f s" % (value / 1000.0),
)
else:
return self.critical_format(
"%.2f m" % (value / 60000.0),
)
# }
#
def format_details(self, plan):
details = []
if plan.get("Scan Direction"):
details.append(plan["Scan Direction"])
if plan.get("Strategy"):
details.append(plan["Strategy"])
if len(details) > 0:
return self.muted_format(" [%s]" % ", ".join(details))
return ""
def format_tags(self, plan):
tags = []
if plan["Slowest"]:
tags.append(self.tag_format("slowest"))
if plan["Costliest"]:
tags.append(self.tag_format("costliest"))
if plan["Largest"]:
tags.append(self.tag_format("largest"))
if plan.get("Planner Row Estimate Factor", 0) >= 100:
tags.append(self.tag_format("bad estimate"))
return " ".join(tags)
def get_terminator(self, index, plan):
if index == 0:
if len(plan.get("Plans", [])) == 0:
return "⌡► "
else:
return "├► "
else:
if len(plan.get("Plans", [])) == 0:
return " "
else:
return ""
def wrap_string(self, line, width):
if width == 0:
return [line]
return textwrap.wrap(line, width)
def intcomma(self, value):
sep = ","
if not isinstance(value, str):
value = int(value)
orig = str(value)
new = re.sub(r"^(-?\d+)(\d{3})", rf"\g<1>{sep}\g<2>", orig)
if orig == new:
return new
else:
return self.intcomma(new)
def output_fn(self, current_prefix, string):
return "%s%s" % (self.prefix_format(current_prefix), string)
def create_lines(self, plan, prefix, depth, width, last_child):
current_prefix = prefix
self.string_lines.append(
self.output_fn(current_prefix, self.prefix_format(""))
)
joint = ""
if last_child:
joint = ""
#
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s%s %s"
% (
self.prefix_format(joint + "─⌠"),
self.bold_format(plan["Node Type"]),
self.format_details(plan),
self.format_tags(plan),
),
)
)
#
if last_child:
prefix += " "
else:
prefix += ""
current_prefix = prefix + ""
cols = width - len(current_prefix)
for line in self.wrap_string(
DESCRIPTIONS.get(plan["Node Type"], "Not found : %s" % plan["Node Type"]),
cols,
):
self.string_lines.append(
self.output_fn(current_prefix, "%s" % self.muted_format(line))
)
#
if plan.get("Actual Duration"):
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s (%.0f%%)"
% (
"Duration:",
self.duration_to_string(plan["Actual Duration"]),
(plan["Actual Duration"] / self.explain["Execution Time"])
* 100,
),
)
)
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s (%.0f%%)"
% (
"Cost:",
self.intcomma(plan["Actual Cost"]),
(plan["Actual Cost"] / self.explain["Total Cost"]) * 100,
),
)
)
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s" % ("Rows:", self.intcomma(plan["Actual Rows"])),
)
)
current_prefix = current_prefix + " "
if plan.get("Join Type"):
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s" % (plan["Join Type"], self.muted_format("join")),
)
)
if plan.get("Relation Name"):
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s.%s"
% (
self.muted_format("on"),
plan.get("Schema", "unknown"),
plan["Relation Name"],
),
)
)
if plan.get("Index Name"):
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s" % (self.muted_format("using"), plan["Index Name"]),
)
)
if plan.get("Index Condition"):
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s" % (self.muted_format("condition"), plan["Index Condition"]),
)
)
if plan.get("Filter"):
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s %s"
% (
self.muted_format("filter"),
plan["Filter"],
self.muted_format(
"[-%s rows]" % self.intcomma(plan["Rows Removed by Filter"])
),
),
)
)
if plan.get("Hash Condition"):
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %s" % (self.muted_format("on"), plan["Hash Condition"]),
)
)
if plan.get("CTE Name"):
self.string_lines.append(
self.output_fn(current_prefix, "CTE %s" % plan["CTE Name"])
)
if plan.get("Planner Row Estimate Factor") != 0:
self.string_lines.append(
self.output_fn(
current_prefix,
"%s %sestimated %s %.2fx"
% (
self.muted_format("rows"),
plan["Planner Row Estimate Direction"],
self.muted_format("by"),
plan["Planner Row Estimate Factor"],
),
)
)
current_prefix = prefix
if len(plan.get("Output", [])) > 0:
for index, line in enumerate(
self.wrap_string(" + ".join(plan["Output"]), cols)
):
self.string_lines.append(
self.output_fn(
current_prefix,
self.prefix_format(self.get_terminator(index, plan))
+ self.output_format(line),
)
)
for index, nested_plan in enumerate(plan.get("Plans", [])):
self.create_lines(
nested_plan, prefix, depth + 1, width, index == len(plan["Plans"]) - 1
)
def generate_lines(self):
self.string_lines = [
"○ Total Cost: %s" % self.intcomma(self.explain["Total Cost"]),
"○ Planning Time: %s"
% self.duration_to_string(self.explain["Planning Time"]),
"○ Execution Time: %s"
% self.duration_to_string(self.explain["Execution Time"]),
self.prefix_format(""),
]
self.create_lines(
self.plan,
"",
0,
self.terminal_width,
len(self.plan.get("Plans", [])) == 1,
)
def get_list(self):
return "\n".join(self.string_lines)
def print(self):
for lin in self.string_lines:
print(lin)